NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups

Tomoko Oshima-Takago\(^1,2\) and Hideki Takago\(^1,2,3\)

\(^1\)Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama 359-8555, Japan
\(^2\)Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
\(^3\)Department of Otolaryngology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan

\(N\)-Methyl-D-aspartate receptors (NMDARs) play diverse roles in synaptic transmission, synaptic plasticity, neuronal development and neurological diseases. In addition to their postsynaptic expression, NMDARs are also expressed in presynaptic terminals at some central synapses, and their activation modulates transmitter release. However, the regulatory mechanisms of NMDAR-dependent synaptic transmission remain largely unknown. In the present study, we demonstrated that activation of NMDARs in a nerve terminal at a central glutamatergic synapse inhibits presynaptic Ca\(^{2+}\) currents \((I_{Ca})\) in a GluN2C/2D subunit-dependent manner, thereby decreasing nerve-evoked excitatory postsynaptic currents. Neither presynaptically loaded fast Ca\(^{2+}\) chelator BAPTA nor non-hydrolysable GTP analogue GTP\(_{\gamma}\)S affected NMDAR-mediated \(I_{Ca}\) inhibition. In the presence of a glutamate uptake blocker, the decline in \(I_{Ca}\) amplitude evoked by repetitive depolarizing pulses at 20 Hz was attenuated by an NMDAR competitive antagonist, suggesting that endogenous glutamate has a potential to activate presynaptic NMDARs. Moreover, NMDA-induced inward currents at a negative holding potential (−80 mV) were abolished by intra-terminal loading of the NMDAR open channel blocker MK-801, indicating functional expression of presynaptic NMDARs. We conclude that presynaptic NMDARs can attenuate glutamate release by inhibiting voltage-gated Ca\(^{2+}\) channels at a relay synapse in the immature rat auditory brainstem.

1. Introduction

The \(N\)-methyl-D-aspartate receptor (NMDAR), a member of the ionotropic glutamate receptor family, consists of glycine-binding GluN1 (formerly NR1) subunits together with glutamate-binding GluN2 (GluN2A–D, formerly NR2A–D) subunits and/or glycine-binding GluN3 (GluN3A,B, formerly NR3A,B) subunits, which form a heteromeric receptor complex \([1,2]\). Postsynaptic NMDARs show variable functions in synaptic transmission, synaptic plasticity, neuronal development and neuronal diseases (for review see \([3–7]\)). Interestingly, over the past two decades, accumulating evidence has indicated that NMDARs are also presynaptically expressed in the cerebral cortex \([8–12]\), hippocampus \([13,14]\), amygdala \([15]\), cerebellum \([16–18]\) and spinal cord \([19,20]\). Activation of presynaptic NMDARs enhances spontaneous release at glutamatergic synapses in the cerebral cortex \([10,21–23]\), hippocampus \([14,24]\) and amygdala \([25]\) as well as at GABAergic synapses in the cerebellum \([18,26–30]\) and hippocampus \([31]\). Further, presynaptic NMDAR activation facilitates action potential-evoked glutamate release at cortical \([21,22]\) and hippocampal \([32]\) synapses, and induces long-term potentiation at glutamatergic synapses in the amygdala \([33]\) and subiculum \([34,35]\). In contrast, previous
research has also indicated that presynaptic NMDARs attenuate action potential-evoked transmitter release at both excitatory [36] and inhibitory [26,28] synapses, and mediate long-term depression of excitatory [10,17,22,37–39] and inhibitory [40] synaptic transmission. However, the mechanisms underlying presynaptic NMDAR-mediated regulation of synaptic transmission remains to be clarified.

Despite these findings, recent studies have challenged the existence of axonal/presynaptic NMDA receptors. In a previous study, focal iontophoretic application of the NMDAR agonist L-aspartate onto the axons of cerebellarstellate cells failed to elicit Ca2⁺ transients in axonal varicosities. However, L-aspartate application onto the dendrites of these cells elicited Ca2⁺ transients in axonal varicosities via opening of voltage-gated Ca2⁺ channels (VGCCs) triggered by passive propagation of depolarization from somatodendritic sites down along axons [41]. Subsequent studies by the same research group revealed no evidence of functional NMDAR expression in the axons of L5 pyramidal cells in the visual cortex [42], or basket cells in the cerebellum [43]. Given such controversial findings, presynaptic recordings should be used to explore whether other types of cells in the CNS exhibit axonal/presynaptic NMDAR expression.

At the calyx of Held synapse in the rat auditory brainstem, whose presynaptic structure is large enough to enable direct whole-cell patch-clamp recordings, application of exogenous L-glutamate inhibits nerve-evoked release of the endogenous neurotransmitter glutamate [44]. This presynaptic inhibitory action is mediated by metabotropic glutamate receptors (mGlurS) [45] and also by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) [44] expressed in the presynaptic terminal. Both types of glutamate receptors inhibit VGCCs via the activation of heterotrimeric G proteins. However, mGlur and AMPA/kainate receptor antagonists only partially impair the inhibitory effect of L-glutamate on presynaptic Ca2⁺ currents (Ica), suggesting the involvement of additional mechanisms. In the present study, we show that activation of presynaptic NMDARs induces inward currents at a negative holding potential, inhibits Ia and decreases action potential-dependent excitatory postsynaptic currents (EPSCs) at the calyx of Held synapse in the immature rat brainstem.

2. Material and methods

2.1. Animals, preparations and solutions

Wistar rats (7–9 days old) of either sex were used. After decapitation under deep isoflurane or halothane inhalation anaesthesia, the brain was quickly removed. Transverse brainstem slices (200–250 μm in thickness) containing the medial nucleus of trapezoid body (MNTB) were cut ice-cold using a tissue slicer (PRO-7, Dosaka, Kyoto, Japan or VT-1200S, Leica, Mannheim, Germany) as described previously [46]. Slices were incubated at 37°C for 30 min and subsequently maintained at room temperature (21–25°C) in artificial cerebrospinal fluid (aCSF) containing (in mM): 125 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 10 d-glucose, 3 myo-inositol, 2 sodium pyruvate and 0.5 sodium ascorbate (pH 7.4 when bubbled with 95% O2 and 5% CO2). Calyces and MNTB neurons were visualized with a 60 x water immersion objective lens (Olympus, Tokyo, Japan) attached to an upright microscope (BX51WI, Olympus, Tokyo, Japan or Axioskop, Zeiss, Oberkochen, Germany). For recording presynaptic Ca2⁺ currents (Ica), the aCSF additionally contained tetrodotoxin (TTX, 1 μM, Wako, Osaka, Japan) plus tetraethylammonium chloride (TEACl, 10 mM; equimolar replacement for NaCl), and the presynaptic pipette solution contained (in mM): 110 CsCl, 10 TEACl, 40 HEPES, 0.5 EGTA, 1 MgCl2, 12 Na₂ phosphocreatine, 2 ATP-Mg and 0.5 GTP-Na (pH 7.3 with CsOH, 295–305 mOsM kg⁻¹). For recording presynaptic Ba2⁺ currents (Iba), CsCl (2 mM) in the aCSF was replaced with equimolar BaCl2. For recording presynaptic membrane currents, the aCSF additionally contained TTX (1 μM), and the presynaptic pipette solution contained (in mM): 97.5 potassium gluconate, 32.5 KCl, 5 HEPES, 5 EGTA, 1 MgCl2, 12 Na₂ phosphocreatine, 2 ATP-Mg and 0.5 GTP-Na (pH 7.3 with KOH, 295–305 mOsM kg⁻¹). For recording EPSCs the aCSF routinely contained bicuculline methiodide (10 μM, Sigma, St. Louis, MO, USA) and strychnine hydrochloride (0.5 μM, Sigma) to block GABAergic and glycinegenic inhibitory synaptic currents, respectively. The postsynaptic pipette solution contained (in mM): 110 CsF, 30 CsCl, 10 HEPES, 5 EGTA, and 1 MgCl2 (pH adjusted to 7.3 with CsOH, 295–305 mOsM kg⁻¹). Further, N-(2,6-diethylphenylcarbamoylmethyl)-triethyl-ammonium chloride (QX314, 5 mM, Alomone Labs, Jerusalem, Israel) was also included in the postsynaptic pipette solution to block action potential generation.

2.2. Chemical compounds

In addition to chemicals already mentioned above, we used the following NMDAR agonists: NMDA from Sigma and (3-chlorophenyl) [3,4-dihydro-6,7-dimethoxy-1-[(4-methoxy-phenoxo) methyl]-1H-isquinolinyl]methanone (CIQ) from Tocris Bioscience (Bristol, UK). We also used the following NMDAR antagonists: 7-chlorokynurenate (7-CK), d-(-)-2-amino-5-phosphonopentanic acid (d-AP5), 4-(5-(4-bromophenyl)-3-(3-(4-hydroxyphenyl)-2-oxo-4-phenyl-1,2-dihydroquinolin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)-4-oxobatoic acid (DQP 1105), and (R,S)-α-(4-hydroxyphenyl)-β-methyl-4-[(phenylmethyl)-1-piperidinepropanol (Ro 25-6981) from Tocris Bioscience as well as (++)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) and ZnCl2 from Sigma. Other than NMDAR agonists/antagonists, we used DL-threo-β-benzylxloaspartic acid (DL-TBOA) from Tocris Bioscience, BAPTA from Dojindo (Kumamoto, Japan), and tricine from Nacalai Tesque (Kyoto, Japan). We obtained all of remaining chemicals used in this study from Sigma.

2.3. Electrophysiological recordings

Whole-cell patch-clamp recordings were made from presynaptic calyceal nerve terminals or postsynaptic MNTB principal neurons. For recording Ia and Ib, calyces were voltage-clamped at a holding potential of −80 mV, and depolarizing voltage steps (duration: 3 ms) were applied every 20 s. The Ica amplitude was measured 2–3 ms after the onset of depolarizing pulses. For recording evoked EPSCs, MNTB neurons were voltage-clamped at a holding potential of −70 mV, and presynaptic axons were stimulated every 20 s by using a tungsten bipolar electrode positioned halfway between the midline and the MNTB. The EPSC
amplitude was measured at their peaks. For presynaptic recordings, the electrode resistance was 4–8 MΩ, and the access resistance was 5–18 MΩ with its compensation by 80%. Leak currents in presynaptic recordings were subtracted by the scaled pulse (P/8) protocol. For postsynaptic recordings, the electrode resistance was 2.5–4 MΩ, and access resistance was 5–15 MΩ with its compensation by 70%. Voltage-clamp recordings were made using a patch-clamp amplifier (Axopatch-200B, Axon Instruments, Foster City, CA, USA). Current-clamp recordings of presynaptic action potentials were made using another patch-clamp amplifier (MultiClamp 700A, Axon Instruments) equipped with a high input impedance (1011 Ω) voltage follower. Recorded signals were low-pass-filtered at 5 kHz and digitized at 20–50 kHz by an analogue–digital converter (Digidata 1322A, Axon Instruments) with pCLAMP 9 software (Axon Instruments). Liquid–junction potentials between the pipette solutions and the aCSF were not corrected for. Drugs were bath-applied by switching superfusates using a peristaltic pump or a gravity-fed perfusion system (perfusion rate, 2.0–6.0 ml min⁻¹). Experiments were carried out at room temperature (21–25°C).

2.4. Statistical analysis

Data are presented as mean ± s.e.m. For comparison of paired data from one group, we first used Shapiro–Wilk normality test, then employed Student’s paired t-test. For comparison of data from the control groups and groups with various kinds of manipulations such as extracellular/intracellular application of NMDAR agonists/antagonists, we first used Shapiro–Wilk normality test, then employed Student’s unpaired t-test. Since all the data in this study passed the normality test, nonparametric statistical analysis was not necessary. Unless otherwise described, Student’s unpaired t-test was employed. Statistical significance was considered when p-value was less than 0.05 (SIGMAPLOT 12.0, Systat Software Inc., San Jose, CA, USA), and significance level is denoted using asterisks (*p < 0.05, **p < 0.01 and ***p < 0.001).

3. Results

3.1. Inhibitory effect of NMDA on presynaptic Ca²⁺ currents (I_{Ca})

Previous studies have revealed that activation of mGluRs [45] or AMPARs [44] in the calyx of Held presynaptic terminal inhibits I_{Ca}. First, we investigated whether NMDA also inhibits I_{Ca}. As illustrated in figure 1a, bath-application of NMDA (50 µM) in Mg²⁺-free aCSF inhibited I_{Ca} by 8.3 ± 2.7% at 0 mV (n = 5) without a clear shift in the current–voltage relationship (figure 1b). The inhibitory effect of NMDA on I_{Ca} was concentration-dependent with an IC₅₀ of 135 µM (figure 1c). Based on this result, we used a relatively high concentration of NMDA (500 µM) for controls in order to securely analyse the property of NMDA-induced I_{Ca} inhibition. As illustrated in figure 1d, bath-application of NMDA at this concentration in Mg²⁺-free aCSF more evidently inhibited I_{Ca} by 26.0 ± 3.7% at 0 mV (n = 5), again without a clear shift in the current–voltage relationship (figure 1e). The NMDAR competitive antagonist D-APS (500 µM) abolished this NMDA effect (to 1.2 ± 0.9%, n = 5, ***p < 0.001; figure 1f,i).

Although glycine (10 µM) had no effect on NMDA-induced I_{Ca} inhibition (29.9 ± 2.8%, n = 5, p = 0.222), the NMDAR glycine-site blocker 7-chlorokynurenic acid (7-CIK, 100 µM) blocked it (to 2.8 ± 0.3%, n = 4, **p < 0.01; figure 1i), suggesting that glycine sites of NMDARs may be saturated by endogenous ligand(s) in slices. Surprisingly, a physiological concentration of extracellular Mg²⁺ (1 mM) did not significantly weaken NMDA-induced I_{Ca} inhibition (19.7 ± 1.6%, n = 5, p = 0.158; figure 1h,i), although a higher concentration of extracellular Mg²⁺ (5 mM) successfully abolished the inhibition (to 3.6 ± 1.1%, n = 4, **p < 0.01; figure 1i). These results indicate that NMDA-induced I_{Ca} inhibition was indeed mediated by NMDARs. To exclude the possibility that NMDARs expressed in surrounding neurons and/or glia might mediate this NMDA effect, we loaded the NMDAR open channel blocker MK-801 (500 µM) directly into the calyceal nerve terminal through a whole-cell patch pipette. We set the concentration of intra-terminal MK-801 to a range of sub-millimolar based on the procedure used in a previous study, in which MK-801 (1 mM) was applied into presynaptic neurons through the patch pipettes [38]. Under this condition, intra-terminal MK-801 nearly abolished NMDA-induced I_{Ca} inhibition (to 7.3 ± 2.4%, n = 4, **p < 0.01; figure 1g,i), suggesting that functional NMDARs are expressed in calyceal nerve terminals, and that their activation inhibits presynaptic VGCCs.

3.2. Subunit dependence of NMDAR-mediated I_{Ca} inhibition

We next investigated which NMDAR subunits contribute to NMDA-induced inhibition of presynaptic VGCCs. Since sub-micromolar concentrations of Zn²⁺ selectively blocks the GluN2A subunit [47], we examined the effect of Zn²⁺ on NMDA-induced I_{Ca} inhibition. In the presence of 300 nM of free Zn²⁺ in the superfusate, which was achieved by a combination of ZnCl₂ (27 µM) and zinc buffer tricine (10 mM), NMDA (500 µM) still inhibited I_{Ca} to a similar extent as the control (24.6 ± 3.2%, n = 4, p = 0.792; figure 2a,d). For the GluN2B subunit, we used the GluN2B selective antagonist Ro 25-6981 (1 µM) and found no significant difference compared with the control (23.8 ± 3.7%, n = 4, p = 0.690; figure 2b,d). In contrast, the GluN2C/2D selective antagonist DQ1 1105 (10 µM) significantly weakened the NMDA-induced I_{Ca} inhibition (10.7 ± 1.7%, n = 5, **p < 0.01; figure 2c,d), whereas the GluN2C/2D selective potentiator CIQ (10 µM) significantly strengthened this inhibition (35.2 ± 1.9%, n = 6, *p < 0.05; figure 2f). We were unable to pharmacologically evaluate the involvement of the GluN3 subunit due to the lack of subunit-specific agonists/antagonists. Taken these results together, GluN2C/2D subunits, but not GluN2A or GluN2B subunits, contribute to NMDAR-mediated inhibition of presynaptic VGCCs at the immature calyx of Held synapse.

3.3. G proteins and Ca²⁺ are dispensable for NMDAR-mediated I_{Ca} inhibition

At the calyx of Held, a variety of presynaptic receptors are coupled to the heterotrimeric G proteins, and direct interaction of Gβγ subunits with presynaptic VGCCs inhibits I_{Ca} as shown for mGluRs [45], GABA_BRs [48,49], noradrenaline
NMDA (50 μM) attenuated presynaptic Ca2+ currents (I\textsubscript{Ca}) evoked by a depolarizing pulse (from a holding potential of −80 to 0 mV (duration: 3 ms) in 0 mM Mg2+ aCSF. Sample records show I\textsubscript{Ca} before (i) and during (ii) NMDA application. Three consecutive I\textsubscript{Ca} were averaged and superimposed for each. The current–voltage relationships of I\textsubscript{Ca} before (open circles) and during (filled circles) 50 μM NMDA application. Mean amplitude of I\textsubscript{Ca} from 5 calyces at each membrane potential was normalized to that at 0 mV before NMDA application. The concentration-dependence of NMDA-induced I\textsubscript{Ca} inhibition. Individual data points and bars indicate mean ± s.e.m. derived from 4–5 calyces. I\textsubscript{Ca} value was 135 μM. (d) I\textsubscript{Ca} inhibition by NMDA (500 μM) in 0 mM Mg2+ aCSF as a control for comparison with that in the presence of NMDAR antagonists. Sample records of I\textsubscript{Ca} before (iii) and during (iv) NMDA application. (e) The current–voltage relationships of I\textsubscript{Ca} before (open circles) and during (filled circles) 500 μM NMDA application. (f) Bath-application of d-AP5 (500 μM) blocked NMDA-induced I\textsubscript{Ca} inhibition (v,vi). (g) MK-801 (500 μM) loaded into the presynaptic terminal nearly abolished NMDA-induced I\textsubscript{Ca} inhibition (vii,viii). (h) Physiological concentration of extracellular Mg2+ (1 mM) only weakly attenuated NMDA-induced I\textsubscript{Ca} inhibition (ix,x). (i) Summary of percentage inhibition of I\textsubscript{Ca} by NMDA (500 μM) in the absence (control, n = 5) or presence of the NMDAR blockers such as d-AP5 (500 μM, n = 5), intra-terminal MK-801 (IMK-801, 500 μM) loaded into presynaptic terminals, n = 4) and 7-ClK (100 μM, n = 4) as well as those in the presence of Mg2+ (1 mM, n = 5; 5 mM, n = 4). Both individual data (open circles) and mean ± s.e.m. (dark grey bars) are shown. Asterisks indicate significant statistical differences (**p < 0.01, ***p < 0.001). Scale bars in the superimposed sample traces indicate 2 ms for horizontal and 1 nA for vertical axes, respectively.
Figure 2. NMDAR-mediated ICa inhibition is GluN2C/2D-dependent. In each experiment, the bath superfuse additionally contained one of the specific NMDAR subunit antagonists: (a) zinc (300 nM as free Zn$^{2+}$) for GluN2A, (b) Ro 25-6981 (1 μM) for GluN2B, and (c) DOP 1105 (10 μM) for GluN2C/2D, respectively. (d) Summary of NMDAR subunit dependence of ICa inhibition. Note that a GluN2C/2D potentiator, CIQ (10 μM), augmented NMDAR-mediated ICa inhibition. Both individual data (open circles) and mean ± s.e.m. (dark grey bars) are shown. Asterisks indicate significant statistical differences (*p < 0.05, **p < 0.01). Scale bars in the superimposed sample traces indicate 2 ms for horizontal and 1 nA for vertical axes, respectively.

ICa by 19.4 ± 0.6% (n = 4), and this effect was lessened to 6.1 ± 0.9% (n = 4, *p < 0.05) by a mixture of t-AP5 (500 μM) and 7-ClK (100 μM). These results suggest that presynaptic NMDARs mainly mediate t-glutamate-induced additional ICa inhibition after full activation of mGluRs and AMPARs [44].

We then examined whether intra-terminal Ca$^{2+}$, which is elevated by presynaptic NMDAR activation, mediates NMDA-induced ICa inhibition. The fast Ca$^{2+}$ chelator BAPTA (10 mM) loaded into the calyceal terminal had no effect on NMDA-induced ICa inhibition (31.1 ± 1.8%, n = 4, p = 0.290; figure 3c,e). Moreover, replacement of the VGCC charge carrier Ca$^{2+}$ with Ba$^{2+}$ (2 mM) had no significant effect on the NMDA-induced inhibition of presynaptic Ba$^{2+}$ currents (21.2 ± 1.0%, n = 5, p = 0.254; figure 3d,e). These results suggest that intra-terminal Ca$^{2+}$ does not contribute to NMDA-induced ICa inhibition.

We also examined a possible effect of Na$^{+}$ on the ICa inhibition. When extracellular Na$^{+}$ was replaced with equimolar TEA$^{+}$, bath-application of NMDA (500 μM) no longer inhibited ICa (3.5 ± 1.0%, n = 4; *p < 0.01; figure 3e), suggesting that Na$^{+}$ influx through presynaptic NMDARs may somehow mediate the ICa inhibition.

We further aimed to identify the intracellular mechanism(s) that links NMDAR activation and Ca$^{2+}$ channel inhibition in the calyceal terminal. Since presynaptic NMDARs are relevant to nitric oxide synthesis in the cerebellum [54,55] as well as protein kinase C activation in the neocortex [56], we examined whether such chemicals as the nitric oxide synthase inhibitor L-NNA (1 mM) or the protein kinase C inhibitor staurosporine (2 μM) attenuate ICa inhibition induced by NMDA (500 μM). However, neither agent exerted a significant effect (32.1 ± 3.1%, n = 4, p = 0.259 for L-NNA; 23.1 ± 2.3%, n = 4, p = 0.560 for staurosporine, figure 3e). Moreover, we examined whether endocannabinoid signalling triggered via the activation of NMDARs in the postsynaptic MNTB neuron is associated with NMDA-induced ICa inhibition. Based on the protocol in a previous study [57], we performed these experiments using the cannabinoid receptor type 1 blocker AM 251 (5 μM). In the presence of AM 251 in aCSF, NMDA application still inhibited ICa by 23.6 ± 3.0% (n = 4, p = 0.473, figure 3e), suggesting that endocannabinoid-dependent retrograde signalling is not involved in NMDA-induced ICa inhibition.

3.4. NMDA-induced currents in the calyceal nerve terminal

We examined whether NMDARs expressed in the calyceal nerve terminal exhibit ionotropic channel properties. In Mg$^{2+}$-free aCSF containing TTX (1 μM), at a holding potential of −80 mV, bath-application of NMDA (500 μM) induced inward currents (35.5 ± 9.9 pA, n = 7, figure 4a), which were accompanied by an increase in membrane noise (figure 4b). Intra-terminal MK-801 (500 μM) significantly reduced these NMDA currents to 8.9 ± 2.2 pA (n = 4; figure 4b). After maximal blockade of presynaptic K$^{+}$ channels by using a Cs$^{+}$-based pipette solution containing TEA (10 mM) and also replacement of extracellular Ca$^{2+}$ with equimolar Ba$^{2+}$ (2 mM), bath-application of NMDA (500 μM) still induced inward currents (17.3 ± 6.9 pA, n = 5; figure 4c), which were again accompanied by an increase in membrane noise (figure 4c). Intra-terminal MK-801 (500 μM) had no effect on the presynaptic resting membrane potential (−60.6 ± 1.2 mV for control, −61.8 ± 1.5 mV for MK-801, n = 5 for each, p = 0.471), peak amplitude (95.6 ± 2.0 mV for control, 96.8 ± 2.1 mV for MK-801, p = 0.655) or half-width (0.49 ± 0.04 ms for control, 0.47 ± 0.07 ms for MK-801, p = 0.835) of presynaptic action potentials, suggesting that its blocking effect is specific for NMDARs. These results indicate that functional NMDARs are expressed in the calyceal nerve terminals. The reduction in the inward current amplitude following blockade of K$^{+}$ channels and small currents remaining in the presence of intra-terminal MK-801 (figure 4b) imply that activation of NMDARs in surrounding cells might additionally contribute to NMDA-induced inward currents via an increase in extracellular K$^{+}$ concentration.

3.5. NMDAR-mediated ICa inhibition by endogenous glutamate

We then investigated whether endogenous glutamate inhibits ICa via the activation of presynaptic NMDARs. When ICa were evoked by a train of 30 depolarizing pulses (to 0 mV, duration: 1 ms) at 20 Hz, the ICa amplitude displayed an activity-dependent decline, and reached a steady-state (ss) level lower than that of the first ICa (I_{ss}/I_{1st}: 92.9 ± 4.0%, n = 5). Previous research reported that elevated extracellular glutamate by repetitive depolarizing stimuli activates presynaptic mGluRs, thereby reducing glutamate release [58]. This mechanism may have partly contributed to the ICa decline that we observed in this experiment. In the presence of t-AP5 (500 μM) in aCSF, no changes in this ICa decline were observed (I_{ss}/I_{1st}: 92.6 ± 4.3%, n = 5,
Figure 3. NMDAR-mediated ICa inhibition requires neither G proteins nor Ca2+. (a) Intra-terminal loading of GTPγS (0.2 mM) attenuated ICa (i,iii), but had no effect on NMDA-induced ICa inhibition (iii). (b) In the presence of GTPγS (0.2 mM), L-glutamate (500 μM) inhibited ICa (open circles, iv,v, n = 4). A cocktail of NMDAR blockers (500 μM D-AP5 plus 100 μM 7-CKI) weakened the L-glutamate-induced ICa inhibition (filled circles, vi,vii, n = 4). (c) NMDA (500 μM) attenuated ICa (viii, ix) in the presence of BAPTA (10 mM) in the presynaptic terminal. (d) NMDA (500 μM) attenuated ICa (viii,x,xi) through presynaptic Ca2+ channels. ICa was evoked by a depolarizing pulse to 0 mV (duration: 3 ms). Scale bars in the superimposed sample traces indicate 2 ms for horizontal and 1 nA for vertical axes, respectively.

(e) Summary of percentage inhibition of ICa by NMDA (500 μM) in the absence (control, n = 5) or presence of the various agents to explore a candidate intracellular mechanism(s) which underlies NMDAR-mediated ICa inhibition. In addition to intra-terminal GTPγS (GTPrS) n = 5) and BAPTA ([BAPTA]i, n = 4) as well as replacement of extracellular Ca2+ with Ba2+ (0 mM [Ca2+]o, n = 5), omission of extracellular Na (0 mM [Na+]o, n = 4), nitric oxide synthesis inhibitor L-NNA (1 mM, n = 4), protein kinase C inhibitor staurosporine (2 μM, n = 4), and cannabinoid receptor type 1 inhibitor AM 251 (5 μM, n = 4) were tested. Asterisks indicate a significant statistical difference (**p < 0.01).

p = 0.615, Student’s paired t-test, figure 5a). In contrast, when ICa were evoked by a train at a higher-frequency of 200 Hz, the ICa amplitude displayed activity-dependent facilitation as previously reported for rats [59] and for mice [60]. Under this condition, D-AP5 again failed to alter the magnitude of facilitation (ICa/I1st: 117.0 ± 2.2% for control, 118.6 ± 1.6% for D-AP5, n = 5, p = 0.536, Student’s paired t-test, figure 5b).

Furthermore, to clarify whether endogenous glutamate activates presynaptic NMDARs, ICa were evoked by a train at 20 Hz in the presence of the glutamate uptake blocker TBOA (100 μM) in aCSF. As observed in the absence of TBOA, the ICa amplitude displayed activity-dependent decline and reached a steady-state level lower than that of the first ICa (ICa/I1st: 86.4 ± 2.8%, n = 7). Previous studies already revealed that not only repetitive depolarizing stimuli [58] but also glutamate transporter blockade by TBOA [61] raises extracellular glutamate, thereby activating presynaptic mGluR-dependent autoinhibition of glutamate release. Both mechanisms may have partly contributed to the ICa decline that we observed with this protocol. Under this condition, bath-application of D-AP5 (500 μM) significantly weakened this magnitude of ICa decline (ICa/I1st: 90.3 ± 1.6%, p < 0.05, figure 5c). These results imply that endogenous glutamate released from the nerve terminal or surrounding cells [14,62] inhibits ICa via the activation of presynaptic NMDARs. Furthermore, these results suggest that NMDAR-mediated presynaptic inhibition may not occur under physiological conditions, in which extracellular glutamate is promptly cleared by glial uptake systems. However, this inhibition may occur under pathological conditions, in which extracellular glutamate concentration rises to a high level.
4. Discussion

In the present study, we demonstrated that activation of GluN2C/2D subunit-containing presynaptic NMDARs inhibits VGCCs, thereby attenuating action potential-driven release at a central glutamatergic synapse of young rats. Furthermore, we successfully recorded NMDA-induced currents using presynaptic voltage-clamp recordings, confirming functional expression of presynaptic NMDARs at this synapse.

Presynaptic inhibitory effects of NMDAR activation on nerve-evoked synaptic currents were reported at inhibitory synapses in the cerebellum [26,28] as well as excitatory synapses in the spinal cord primary afferents [36]. These studies reported a weak blocking effect of Mg$^{2+}$ on NMDAR-mediated presynaptic inhibition, indicating that GluN2C/2D (preferentially GluN2D) subunits may be involved. In the present study, we also observed a weak blocking effect of Mg$^{2+}$ on NMDAR-mediated I$_{Ca}$ inhibition (figure 1g,h). Further, we confirmed that the GluN2C/2D selective antagonist DQP 1105 weakened (figure 2e,f) but the GluN2C/2D selective potentiator CIQ strengthened NMDAR-mediated I$_{Ca}$ inhibition (figure 2d). Postsynaptic MNTB neurons before the onset of hearing employ GluN2A/2B subunit-containing NMDARs [65], whereas presynaptic calyceal terminals use GluN2C/2D subunit-containing NMDARs (figure 2e,f). Thus, NMDA induced the GluN2C/2D-dependent I$_{Ca}$ inhibition, which may decrease the action potential-driven glutamate release, resulting in the reduction of evoked EPSCs (figure 6d). Notably, presynaptic NMDAR activation still inhibited VGCCs (figure 1h,i) and glutamate release (figure 6h) in the presence of a physiological concentration of Mg$^{2+}$ (1 mM) in aCSF, where postsynaptic NMDARs are blocked at resting membrane potential. It is also noteworthy that postsynaptic MNTB neurons predominantly employ GluN2A/2C subunit-containing NMDARs after the onset of hearing [66].

At some other synapses, activation of presynaptic NMDARs enhances nerve-evoked transmitter release [23,67]. Whereas tonic elevation of intra-terminal Ca$^{2+}$ facilitates transmitter release, it potentially inhibits nerve-evoked transmitter release via adaptation of Ca$^{2+}$ sensor for exocytosis [68]. At the calyx of Held, however, either intra-terminal BAPTA (10 mM) or replacement of the charge carrier Ca$^{2+}$ with Ba$^{2+}$ had no effect on NMDA-induced I$_{Ca}$ inhibition. This excludes the involvement of Ca$^{2+}$-dependent intracellular mechanism(s). Sustained depolarization of the nerve terminal upon NMDA application may inhibit evoked transmitter release by reducing the amplitude of presynaptic action potential. However, this was not the case for NMDAR-mediated presynaptic inhibition in the present study. Expected presynaptic depolarization from the inward currents produced by NMDA (less than 50 pA) is less than 10 mV [44]. Such a mild depolarization facilitates rather than inhibits transmitter release [68,70] by causing tonic Ca$^{2+}$ entry into the terminal [69]. However, upon activation...
of presynaptic NMDARs, this facilitatory effect was actually masked by stronger inhibitory effect of presynaptic NMDAR-dependent ICa inhibition. This effect may have been associated with the smaller reduction in evoked EPSC amplitude (32.9% in 1 mM Mg2+ in aCSF, figure 6i), compared to the reduction in ICa amplitude (18.1% in 1 mM Mg2+ in aCSF, figure 1h,i) (cf. the EPSC amplitude is proportional to the fourth power of ICa [71]). This discrepancy may also be explained by spillover of a millimolar range of MK-801 from the patch pipette during its approach onto the postsynaptic MNTB neuron, which may have partially attenuated presynaptic NMDARs upon the EPSC recording.

Blockade of NMDA-induced ICa inhibition by loading of intra-terminal MK-801 (figure 1g) and by omission of extracellular Na+ (figure 3c) implies that Na+ influx through presynaptic NMDARs may be involved. Interestingly, Na+ suppressed the enhancement of spontaneous transmitter release by presynaptic NMDAR activation in the mouse primary visual cortex [56]. The Na+-mediated regulation mechanism should be elucidated in future studies.

The VGCC in the calyceal terminal is a common target for presynaptic G protein-coupled receptors (GPCRs), including mGlurS [45], GABAARs [48,72], noradrenaline αRs [50], adenosine A1Rs [51] and 5-HT1B Rs [52] as well as presynaptic AMPARs [44]. These receptors activate heterotrimeric G proteins, and direct interaction of Gβγ subunits with presynaptic Ca2+ channels inhibits ICa [49]. These presynaptic inhibitory effects of GPCR ligands on VGCCs occlude with each other [51] and are blocked by the non-hydrolysable GTP analogue GTPγS loaded into the calyceal terminal [49], implying that they share the same pathway. However, the present study showed intra-terminal GTPγS had no effect on NMDA-induced ICa inhibition. This suggests that the mechanism which links NMDARs to VGCCs is distinct from the common GTP-G protein pathway.

Then, we aimed to identify the intracellular mechanism(s) to connect NMDAR activation to VGCC inhibition in the calyceal nerve terminal using the nitric oxide synthase inhibitor L-NNA, the protein kinase C inhibitor staurosporine and the CB1 inhibitor AM 251. However, none of these inhibitors weakened NMDA-induced ICa inhibition. Thus, future studies to determine the candidate intracellular mechanism(s) are needed.

Some pieces of evidence in the present study demonstrate functional expression of NMDARs in calyceal nerve terminals rather than in surrounding cells. First, NMDA-induced inward currents were recorded in the calyceal terminal following blockade of potassium conductance (figure 4c). Second, loading of MK-801 into the nerve terminal blocked NMDA-induced inhibition of ICa (figure 1g) and NMDA-induced inward currents (figure 4b), whereas NMDA-induced presynaptic inhibition was observed in the presence of MK-801 in postsynaptic MNTB cells (figure 6o). Third, after replacement of extracellular Ca2+ with Ba2+, NMDA inhibited presynaptic Ba2+ currents (figure 3d), despite the fact that synaptic transmission is nearly terminated after replacement of Ca2+ with Ba2+ [44]. Unfortunately, the extremely low amplitude of NMDA-induced presynaptic membrane currents (17.3 pA at −80 mV, figure 3c) prevented us from further dissecting the properties of NMDARs expressed in calyceal terminals.

Figure 5. Involvement of endogenous NMDA receptor ligand(s) in activity-dependent decline of ICa. ICa were elicited by a train of 30 square depolarizing pulses (to 0 mV, duration: 1 ms). Sample records show the first (1st) and 26th – 30th averaged ICa (ss, superimposed), which are normalized to the first ICa in the absence (left traces) or presence (right traces) of v-AP5 (500 μM). Data points and bars represent mean ± s.e.m. of the normalized ICa amplitude in the presence (filled circles) or absence (open circles) of v-AP5 in the aCSF. (a) Activity-dependent decline of ICa amplitude by 20 Hz stimuli. No significant difference. (b) Activity-dependent facilitation of ICa amplitude by 200 Hz stimuli. No significant difference. (c) Activity-dependent decline of ICa amplitude by 20 Hz stimuli in the presence of the glutamate transporter inhibitor TBOA (100 μM). In the presence of v-AP5, ICa decline became significantly less (p < 0.05, Student’s paired t-test). A horizontal scale bar in the superimposed sample traces indicates 1 ms.
The presynaptic inhibitory effect of NMDA had an IC_{50} of 135 μM for I_{Ca} (figure 1c) and 112 μM for evoked EPSCs (figure 6c), respectively. The recombinant NMDAR currents in Xenopus oocytes have an EC_{50} of 30–60 μM for NMDA, depending on GluN2 subunits co-expressed with the GluN1 subunit [73]. Similarly, the EC_{50} of native NMDAR currents in CA1 neurons in hippocampal slices is 38 μM for NMDA, depending on GluN2 subunits co-expressed with the GluN1 subunit [73]. The relative low affinity of presynaptic NMDARs may reflect the involvement of GluN1 splice variants with low ligand affinity [75]. Ambient glutamate concentration is 55 nM at the calyx of Held synapse of immature rats [76]. In hippocampal slices, the glutamate concentration is 38 μM for NMDA, depending on GluN2 subunits co-expressed with the GluN1 subunit [74].

In the synaptic cleft, the glutamate concentration is estimated to rise above 300 μM [78] or up to 1 mM [79] during excitatory transmission. In experimental anoxia, the glutamate concentration in the cerebral cortex can rise to 400 μM in vivo [80]. Our finding that d-AP5 affected I_{Ca} evoked by repetitive stimulation in the presence of TBOA, but not in its absence (figure 5), suggests that presynaptic NMDARs do not operate under physiological conditions. However, under pathological conditions in which extra- cellular glutamate concentration rises to a high level (e.g. brain anoxia), presynaptic NMDARs may act to reduce glutamate release, thereby playing a protective role against neuronal death due to glutamate excitotoxicity.

Previous research reported that synaptic transmission and glutamate transporter activity at the calyx of Held synapse differ between physiological and room temperature [81]. Thus, the temperature-dependency of NMDAR-mediated

![Figure 6. Attenuation of glutamate release by NMDA. (a) Inhibition of evoked AMPA-EPSCs by NMDA (500 μM) in the presence of Mg^{2+} (1 mM) in aCSF and MK-801 (5 mM) in an MNTB neuron. Note that the concentration of postsynaptically loaded MK-801 (500 μM, figure 1) for maximal block of postsynaptic NMDARs. Sample records show AMPA-EPSCs before (i) and during (ii) bath-application of NMDA (500 μM), and after washout (iii). Three consecutive EPSCs were averaged and superimposed for each. (b) Bath-application of D-AP5 (500 μM) blocked the inhibitory effect of NMDA on evoked AMPA-EPSCs (iv,v). (c) The concentration-dependence of NMDA-induced evoked AMPA-EPSC inhibition. Individual data points and bars indicate mean ± s.e.m. derived from 4 to 7 neurons. IC_{50} value was 112 μM. (d) AMPA-EPSCs evoked by paired-pulse stimulation (inter-pulse interval: 20 ms) in the presence of intracellular MK-801 (5 mM). Sample records in the upper panel show AMPA-EPSCs before (control) and during NMDA application (NMDA). Those in the bottom panel show EPSCs normalized to the first amplitude, in the presence and absence of NMDA (NMDA). (e) PPRs were unaffected by D-AP5 application in 4 neurons. No significant difference. Scale bars in the superimposed sample traces indicate 5 ms for horizontal and 1 nA for vertical axes, respectively.

![Diagram](http://rsob.royalsocietypublishing.org/Downloaded from http://rsob.royalsocietypublishing.org/)

![Diagram](http://rsob.royalsocietypublishing.org/Downloaded from http://rsob.royalsocietypublishing.org/)
presynaptic inhibition remains to be examined in order to further investigate the physiological and pathophysiological relevance. Besides, it needs to be noted that all data in this study were obtained using immature rats (P7–9). It is beyond the scope of our current study to clarify whether the NMDAR-dependent presynaptic inhibition is developmentally regulated, similar to TBOA-induced presynaptic mGluR activation [61].

In conclusion, the present study identified a novel regulatory mechanism for NMDAR-dependent presynaptic inhibition at an excitatory synapse in the auditory brainstem of rat pups by direct presynaptic recordings. Moreover, it also revealed the presence of functional presynaptic NMDARs. These findings bring significant insights to the controversial research field on presynaptic NMDARs. Finally, this study not only provides applicable implications to presynaptic inhibition at other central synapses, but also potentially serves to develop drugs targeting presynaptic NMDARs in the CNS.

Ethics. All experiments complied with the guideline of the Physiological Society of Japan as well as the institutional guidelines. The experimental protocols were approved by the animal experimentation committees of University of Tokyo, Tokyo Medical and Dental University, and National Rehabilitation Center for Persons with Disabilities.

Data accessibility. The datasets supporting this article have been uploaded as part of the electronic supplementary material.

Authors’ contributions. T.O.-T. and H.T. designed the study, carried out experiments, analysed the data and wrote the manuscript. Both authors gave final approval for publication.

Competing interests. We have no competing interests.

Funding. This study was supported by JSPS KAKENHI (Grant number 19791196, 25670722 and 16K11204 to H.T. as well as Grant number 16K18374 to T.O.-T.).

Acknowledgments. We thank Drs Tomoyuki Takahashi, Ken Kitamura, Koichi Morii, Kensuke Watanabe, Masanobu Kano, Takayuki Mura-koshi, Yoshinori Sahara, Yukihiko Nakamura, Taro Ishikawa, Misa Shimuta, Nobutake Hosoi and Masao Tachibana for comments and/or help.

References

64. Rodríguez-Moreno A, Paulsen O. 2008 Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nat. Neurosci. 11, 744 – 745. (doi:10.1038/nn2125)
73. Ishii T et al. 1993 Molecular characterization of the family of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836 – 2843.