Comparative functional genomic screens of three yeast deletion collections reveal unexpected effects of genotype in response to diverse stress

Erica Acton1,2, Amy Huei-Yi Lee1,3, Pei Jun Zhao5, Stephane Flibotte1,4, Mauricio Neira1, Sunita Sinha1, Jennifer Chiang1, Patrick Flaherty6, Corey Nislow1 and Guri Giaever1

1Department of Pharmaceutical Sciences, 2Department of Genome Science and Technology, 3Department of Microbiology and Immunology, and 4Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
5Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
6Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA

The Yeast Knockout (YKO) collection has provided a wealth of functional annotations from genome-wide screens. An unintended consequence is that 76% of gene annotations derive from one genotype. The nutritional auxotrophies in the YKO, in particular, have phenotypic consequences. To address this issue, ‘prototrophic’ versions of the YKO collection have been constructed, either by introducing a plasmid carrying wild-type copies of the auxotrophic markers (Plasmid-Borne, PBprot) or by backcrossing (Backcrossed, BCprot) to a wild-type strain. To systematically assess the impact of the auxotrophies, genome-wide fitness profiles of prototrophic and auxotrophic collections were compared across diverse drug and environmental conditions in 250 experiments. Our quantitative profiles uncovered broad impacts of genotype on phenotype for three deletion collections, and revealed genotypic and strain-construction-specific phenotypes. The PBprot collection exhibited fitness defects associated with plasmid maintenance, while BCprot fitness profiles were compromised due to strain loss from nutrient selection steps during strain construction. The repaired prototrophic versions of the YKO collection did not restore wild-type behaviour nor did they clarify gaps in gene annotation resulting from the auxotrophic background. To remove marker bias and expand the experimental scope of deletion libraries, construction of a bona fide prototrophic collection from a wild-type strain will be required.

1. Background

Yeast has served as a model eukaryote for biological research for over a century. In the ‘pre-sequence’ era (prior to 1996), in order to isolate effects of genotype on phenotype, mutant validation required tedious backcrossing to wild-type. In the genomic era, the combination of a well-annotated genome sequence with new PCR-based gene disruption technologies made reverse genetics straightforward, allowing the construction of the Yeast Knockout (YKOaux) collection, the first and only genome-wide set of precise start-to-stop gene deletions comprising approximately 6000 strains representing the yeast genome [1,2]. The YKOaux collection has greatly expanded our understanding of gene function and the cellular response to perturbation through...

Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.3780116.
comprehensive screens performed in thousands of different environmental and drug conditions [1,2]. As a result, in the 15 years since the completion of the YKOaux deletion collection, the proportion of the genome with functional annotation has increased from approximately 30% to 90% [3–7].

For historical reasons an auxotrophic derivative of S288c, a *Saccharomyces cerevisiae* wild-type, was chosen as the parent strain of the YKOaux collection. The auxotrophies (table 1) were included to facilitate genetic manipulations and at the time were considered inert. A decade of functional genomic, proteomic and metabolomic studies have revealed that these auxotrophies are far from benign and have clear impacts on cellular physiology. Compared with the prototrophic parent, the YKOaux genotype exhibits slower growth rates, decreased survival in starvation conditions and altered patterns of gene expression [9–15]. In addition to auxotrophic effects, natural variants present in the S288c parent strain manifest genotype-specific traits that include poor sporulation and increased rates of mitochondrial genome loss [16–19]. Furthermore, within the *S. cerevisiae* clade, S288c has been classified as an outlier both at the sequence level and by comparative phenotyping [4,20].

Two prototrophic versions of the YKO MATa collection have been constructed to address the potential confounding effects of auxotrophy and, importantly, enable metabolomic studies without nutrient supplementation [21–23]. In the first case, the ‘Plasmid-Borne’ (PBprot) prototrophic collection, auxotrophies were genetically complemented by introducing a single-copy ARS-CEN plasmid carrying wild-type copies of the HIS3, LEU2, URA3 and MET17 genes (pHLUM) [9]. In the second ‘Backcrossed’ (BCprot) collection, the auxotrophic markers were repaired using a synthetic genetic array (SGA)-based methodology [24] by backcrossing to a strain prototrophic for the auxotrophic markers (*S. cerevisiae* MATa/ura3::STE2pr-SpHIS5 his3/MET17 [Giaever et al. [9]).

A powerful experimental feature of the YKOaux collection is the presence of two unique 20-base-pair sequences linked to each deletion strain that serve as unique strain identifiers. These tags, or barcodes, enable the fitness of each strain to be assessed in parallel by pooling strains in competitive growth assays. The relative abundance of barcodes representing each strain is then quantitatively assessed by microarray signal intensities following five generations of growth in synthetic complete (SC) media. The distribution of signal intensities was significantly different for each collection (Kolmogorov–Smirnov p-value < 0.05, electronic supplementary material, figure S2).

2. Results

2.1. Genetic roster of each deletion collection

We constructed a robust metric for strain presence for the comparison of two prototrophic collections with the YKOaux collection after generating independent pools of all deletion strains (Material and methods). Strain presence was quantified by microarray signal intensities following five generations of growth in synthetic complete (SC) media. The distribution of signal intensities was significantly different for each collection (Kolmogorov–Smirnov p-value < 0.05, electronic supplementary material, figure S2). To allow a fair comparison of the fitness profiles obtained, background thresholds were independently determined for each pool using a two-component Gaussian mixture model (Material and methods). The need to independently assess background thresholds was not unexpected; the distribution of fluorescence intensity for a given pool shifts towards lower values as the number of specifically bound probes decreases. Strains hybridizing below these thresholds were considered to be absent from their respective pool and were removed prior to any downstream analysis. A total of 4776 gene deletions were present in at least one pool and 77% (3690) of those were present in all three collections. The original YKOaux collection represented the non-essential yeast genes most comprehensively with 96% (4594) of deletion strains, compared with 89% (4272) in the PBprot collection and 82%
Figure 1. Genetic knockout strain make-up of the three deletion collections. (a) Venn diagram depicting deletion strains present in each of the three deletion collections in SC media (YKOaux, BCprot, PBprot) compared with the gene universe of strains present in at least one collection (4776). Table compares the number of strains missing (i.e., are below the background threshold) from each collection, and the subset of these strains that exhibit slow growth [33].

To highlight the differences between gene rosters of strains present or absent from each collection, pairwise combinations were evaluated for shared and unique functional enrichments. The absence of these strains was anticipated as the majority are slow or inviable in MM [33] and would, therefore, have been selected against during strain construction.

Of the 76 strains absent only in the YKOaux collection, no enrichment for biological processes was observed. Moreover, 60% (45) of these strains were never successfully constructed as diploids by the YKO deletion project. A small subset of strains was absent from the YKOaux and BCprot collections and explicitly required for mating (COA1, GPA1, MSL1, SIR2, SIR3, SRV2, STE2, STE4, STE5, STE7, STE11, STE14) [1,2,35,36], reflecting the inability of these strains to survive the mating step during construction. The relative proportions of strains present in SC media shown here were consistent with those following five generations of growth in rich media (YPD) (electronic supplementary material, figure S3). Barcode sequencing (Bar-seq) of select samples in this study
was compared with published data from our laboratory and others (electronic supplementary material, figure S4) [29,30], providing an independent measure of strain presence which recapitulated the microarray data (electronic supplementary material, Additional Files S3 and S4).

2.2. Comparative fitness profiling

Following assessment of strain presence, we next characterized the phenotypic behaviour of each collection in competitive fitness assays performed in diverse stress conditions including (i) 13 nitrogen and nucleotide-limiting conditions, (ii) the DNA-damaging agent cisplatin and (iii) mitochondrial stress conditions: the oxidative phosphorylation uncoupling agents FCCP, CCCP and growth in obligate respiratory conditions (YPG) (table 2; electronic supplementary material, Additional File S3). For all assays, deletion pools were grown robotically and harvested after five generations of growth (Material and methods).

2.2.1. Nutrient-limiting conditions

Fitness profiles readily identify all genes required in the corresponding biosynthetic pathways when assayed in conditions lacking a specific amino acid, purine or pyrimidine [37]. Both the YKO_{aux} and the PB_{prot} collections recapitulated the established biosynthetic pathways with only minor differences observed between collections (Pearson’s correlation $r = 0.91–0.96$) in adenine (ADE–), arginine (ARG–), methionine (MET–), lysine (LYS–) and tryptophan (TRP–) dropout screens (figure 2; electronic supplementary material, figure S5a–d). The conditions that prohibit screening of the YKO_{aux} collection, including histidine (HIS–), leucine (LEU–) and uracil (URA–) dropout media, were of the greatest interest because of the paucity of functional annotations for these biosynthetic pathways. In these conditions, expression of the genes carried on the PB_{prot} ARS-CEN vector is explicitly required and fitness profiling of the PB_{prot} revealed a unique gene signature that described genes required for plasmid and mini-chromosome maintenance (figure 3). The fact that the histidine–leucine–uracil (HLU) fitness signature was not observed in MET– media despite requiring active expression of MET17 from the ARS-CEN vector (figure 2; electronic supplementary material, figure S5) is consistent with methionine’s role in the regulation of cell cycle progression. Insufficient levels of intracellular methionine (and its downstream product, cysteine) signal cell cycle arrest at G1/start [38–40] until a sufficient level of metabolites is reached to allow successful progression of the cell cycle. During methionine depletion, this cell cycle delay may alleviate the fitness defects (FDs) observed for HIS– LEU– and URA– in the HLU signature. If this interpretation is correct, we expect to observe a similar gene signature in any condition that impinges on histidine, leucine or uracil biosynthetic pathways.

The HLU fitness signature is defined by 73 core genes and revealed an enrichment for biological processes that involved a response to DNA replicative stress including: (i) nuclear division ($q = 2.75 \times 10^{-11}$), (ii) regulation of mitotic sister chromatid segregation ($q = 2.54 \times 10^{-11}$) and (iii) M-phase of mitotic cell cycle ($q = 1.02 \times 10^{-12}$) (figure 3, inset; electronic supplementary material, Additional File S5, https://goo.gl/...)

Table 2. Drug and media conditions assayed per deletion collection by microarray.

*MM condition for YKO_{aux} was supplemented with histidine (20 mg l^{−1}), leucine (30 mg l^{−1}), methionine (20 mg l^{−1}) and uracil (20 mg l^{−1}). Additional Bar-seq experiments were done for the YKO_{aux} (ARG–, TRP–, LYS–, SC) and MATα (ARG–, TRP–, SC) with three and four replicates per condition, respectively (electronic supplementary material, Additional File S4).

<table>
<thead>
<tr>
<th>Control</th>
<th>Condition</th>
<th>YKO<sub>aux</sub></th>
<th>BC<sub>prot</sub></th>
<th>PB<sub>prot</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>control</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>ADE–</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>ARG–</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>HIS–</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>LEU–</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>LYS–</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>MET–</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>SER–</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>THR–</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>TRP–</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>URA–</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SC</td>
<td>MM*</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>SC</td>
<td>MM + URA</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>YPD</td>
<td>control</td>
<td>11</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>YPD</td>
<td>cisplatin, DNA cross-linking agent</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>YPD</td>
<td>FCCP, protonophore inhibitor of oxidative phosphorylation</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>YPD</td>
<td>FCCP, protonophore inhibitor of oxidative phosphorylation</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>YPD</td>
<td>PYRQ, novel quinolone compound, PCID16001701</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>YPD</td>
<td>YPG, obligate respiratory</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
AnUx9o). Many of these genes were originally identified in classic genetic screens for chromosome instability [41], including CLB5, CSM3, CTF4, CTF19, ELG1, IML3, MCM16, MCM21, MRC1, NUP120 and RTT109.

To test if we could correct for this confounding effect and allow the identification of genes specifically sensitive in HIS–, LEU– and URA– screens, fitness scores were recalculated using the HLU gene signature as the reference condition (Material and methods). Following this data transformation, resulting fitness profiles clearly identified genes required in these biosynthetic pathways (figure 4a–c). The histidine profile revealed all genes required for biosynthesis, as well as the general amino acid control (GAAC)-regulated BAS1 transcription factor required specifically in adenine- and histidine-limiting conditions (figure 4a). Similarly, the uracil profile identified URA1, URA2 and URA5 as required for uracil biosynthesis in addition to the PPR1 transcriptional activator of the de novo pyrimidine biosynthesis pathway. As URA4 was a member of the common HLU signature, it was not identified as specifically being required in the uracil dropout condition (figure 4b). The presence of these auxotrophic strains in the PBprot collection was unexpected.

Compared with HIS3 and URA3 auxotrophy, deletion of LEU2 is considered more detrimental to cellular physiology, exhibiting slower growth rates [9] and a decreased rate of

![Diagram of fitness profiling results](rsob.royalsocietypublishing.org/Downloaded from http://rsob.royalsocietypublishing.org/ on September 23, 2017)
survival in starvation conditions [30,42]. In leucine dropout conditions, PBprot FDs included HTD2 from the mitochondrial fatty acid biosynthetic pathway (FASII), genes involved in protein lipoylation (AIM22, GCV3, LIP2), and LPD1 and PDX1 encoding the mitochondrial dihydrolipoyl dehydrogenase complex. Consistent with these results, the BCprot leucine profile reported PDX1, along with MPC1, a subunit of the mitochondrial pyruvate carrier (MPC1/MPC2), and the transcription regulators LEU3 and LEU4. As such, the strains incurring FDs in both collections are deleted for genes that regulate beyond those explicitly required for leucine biosynthesis (figure 4c). These observations are of particular interest as leucine is thought to play a role in central metabolism, including iron–sulfur cluster biogenesis, mitochondrial genome maintenance, and regulation of acetyl-CoA between mitochondrial and cytoplasmic compartments [43]. The FASII pathway is thought to provide the octanoic acid required for biosynthesis of the cofactor lipoic acid (AIM22, GCV3, LIP2), which in turn is required by the mitochondrial pyruvate dehydrogenase complex (LPD1, PDX1), suggesting that the leucine biosynthetic pathway plays a substantial role in maintaining healthy mitochondrial function [33]. To date, however, the exact role of the FASII pathway has not been directly demonstrated and, therefore, the relationship between leucine metabolism and the FASII pathway, which cannot be evaluated in the YKOaux collection due to leucine auxotrophy, serves to highlight an advantage of the prototrophic collections.
Because the majority of deletion strains required for amino acid and nucleotide biosynthesis are missing from the BCprot collection, the resulting FDs were observed only in strains that are specifically compromised for growth in dropout, but not in MM (on which the prototrophic deletion strains were selected). Reported fitness scores included several strains deleted for genes in the GAAC system, including ARO3, ARO4, GCN3 and GCN20, also observed in the YKOaux and PBprot PBprot-HLU signature BCprot genes.

Figure 4. Fitness profiles of prototrophic collections in HIS−, LEU− and URA− dropout conditions. Fitness profiles for the PBprot and BCprot deletion collections in (a) HIS−, (b) URA− and (c) LEU− after five generations of growth. Left panel: FDs observed for the PBprot. Middle panel: PBprot fitness profiles after correcting for the 73 genes in the HLU signature (Material and Methods), revealing histidine-, leucine- and uracil-specific effects. Right panel: fitness profiles observed for the BCprot collection in the same condition. Red dashed line indicates the significance threshold of an FD score of 1.0.
Figure 5. Fitness profiling reveals genotype-specific biology. (a) Fitness profiles in ARG− for the YKOaux, PBprot and BCprot deletion collections. Orange labels: FDs in genes known to be required for arginine biosynthesis. Red dashed line indicates the FD significance threshold of 1.0. (b) Schematic depiction of the cross-talk between the arginine and pyrimidine biosynthetic pathways via the metabolite carbamoyl phosphate. In the absence of arginine and uracil supplementation (red), the cpa1Δ strain grows normally by ‘borrowing’ carbamoyl phosphate produced by the pyrimidine biosynthetic pathway. If uracil is added (green), the pyrimidine pathway is repressed, and growth of the cpa1Δ strain is prohibited, phenocopying the synthetic lethal interaction of ura2Δ with cpa1Δ. (c) Testing of collection-specific phenotypes observed for the cpa1Δ strain by individual strain analysis. The PBprot and BCprot cpa1Δ strains grow normally in minimal media (MM), and neither grows in the presence of exogenous uracil (MM + Ura). Arginine amounts present in standard SC media (86 mg ml⁻¹) is sufficient to rescue the PBprot cpa1Δ phenotype (SC), as is true for the YKOaux cpa1Δ strain (data not shown). By contrast, even arginine concentrations 150× higher than in SC (1.3 × 10⁶ mg ml⁻¹, MM + Ura + Arg) are insufficient to fully rescue the BCprot cpa1Δ strain due to the deletion in CAN1 (encoding the major arginine transporter) present in the BCprot genetic background.
PBprot collections (electronic supplementary material, figure S5). GCN4, however, was present only in the YKOaux collection due to the requirement for this important transcriptional activator during the nutrient selection steps required for the construction of both prototrophic collections.

A unique BCprot FD observed was for the strain deleted for CPA1, a gene required for arginine biosynthesis. The cpa1Δ BCprot strain exhibited severe FDs in all conditions except in minimal and uracil dropout media (electronic supplementary material, figure S6). By contrast, the YKOaux and PBprot cpa1Δ strains were sensitive only in arginine dropout media (figure 5a). These results were observed using both the YKOaux and the MATα collection (electronic supplementary material, figure S7). Because the can1Δ (encoding the major arginine transporter) in the genetic background of the BCprot collection (table 1) is synthetically lethal with genes in the arginine pathway, we investigated how the cpa1Δ strain was able to survive selection on MM during strain construction and why it manifested such an unusual phenotype. An explanation was provided by a classical biochemical study [45] examining the regulation of pyrimidine biosynthesis and the two genes, CPA1 and URA2, that encode carbamoyl-phosphate synthase CPS (figure 5b, +uracil). The activity of either is sufficient to supply the metabolic product carbomyl phosphate, required for both arginine and pyrimidine biosynthesis. In MM, URA2 is expressed and active, allowing the cpa1Δ strain to grow normally. Addition of uracil to the media represses the URA2 enzyme through negative feedback, and cpa1Δ is inviable due to the absence of any carbomyl phosphate synthetase activity (figure 5b, +uracil). Viability can be rescued by adding arginine to the media as evidenced by the PBprot cpa1Δ (figure 5c). However, the BCprot cpa1Δ strain is also deleted for CAN1 (encoding the major arginine transporter), which prohibits rescue even in the presence of excess arginine (figure 5c). This can1Δ cpa1Δ negative genetic interaction therefore explains the FDs observed for the BCprot cpa1Δ in all conditions where uracil is present. Interestingly, in a previous study, a BCprot-specific cpa1Δ FD (as well as the cpa1Δ _μORF) was observed when grown in rich media with dextrose (YPD) that was alleviated in rich media with galactose providing the sole carbon source (YPGal) (log ratio ~3.5 and ~2.9, respectively) [28], suggesting a depression of the pyrimidine pathway in line with the known requirement for UTP in YPGal metabolism. Taken together, the can1(deletion symbol)cpa1(deletion symbol) phenotypes described above are consistent with the need for an active pyrimidine biosynthesis pathway in order to rescue these strains’ FDs (electronic supplementary material, figure S8).

2.2.2. Drug and small-molecule stress conditions

Results from chemogenomic profiling of the DNA-cross-linking agent cisplatin for all three collections were consistent with established mechanisms and previous genome-wide fitness studies [46–48]. Strains exhibiting drug sensitivity in all three collections were significantly enriched for specific DNA damage response (DDR) processes that included, for example, nucleotide excision repair (NER) (RAD1, RAD2, RAD4, RAD10, RAD14), homologous recombination repair (HRR) (RAD51, RAD55, RAD59), post-replication repair (PRR) (RAD5, RAD18), translesion synthesis (TLS) (REV1, REV3) and PSO2, which is required for repair of cisplatin-induced inter-strand cross-links (figure 6a). Interestingly, HIS5 appears with a significant FD in the PBprot but not in the YKOaux or BCprot profiles (figure 6a). As there is cross-talk between the histidine and adenine pathways, it is possible that there is an impact on histidine biosynthesis during DDR. In addition, of the 36 genes involved in DNA damage with a significant FD score in at least one collection, approximately 60% (22) exhibit slow growth only in YPD but not in MM. Reflecting the ability of the PBprot and BCprot to maintain these strains during collection construction in MM, approximately 75% of these genes were present in those two collections, compared with approximately 25% in the YKOaux collection.

In S. cerevisiae, approximately 1000 of all 6000 genes participate in mitochondrial processes and serve crucial, evolutionarily conserved cellular functions. We therefore focused on conditions that perturb mitochondrial function to compare deletion collections. Fitness profiles of the three collections in low doses of the mitochondrial membrane potential poisons CCCP and FCCP as well as growth in obligate respiratory media (YPG, where glycerol provides the carbon source) exhibited strong enrichment in both YKOaux and PBprot profiles for mitochondrial translation and respiration ($g < 1 \times 10^{-17}$ in all conditions). By contrast, the BCprot fitness response was relatively sparse; no enrichment was observed in any of the mitochondrial stress conditions, reflecting the significant proportion of mitochondrial deletion strains missing in that collection (figure 6b).

Challenging the deletion collections with a compound of unknown mechanism provides an unbiased stress for comparing the three collections. The fitness signature of a cationic quinolone (PCID 16001701) previously screened by our laboratory [32,49] was highly correlated with adenine dropout fitness profiles (electronic supplementary material, figure S5a). We reproduced this gene signature in the YKOaux which was supported by a similar profile in PBprot identifying adenine and folic acid biosynthesis genes (ADE1, ADE3, ADE4, ADE6, SHM2, THR3) (figure 6c). The profiles from these two collections suggest the compound acts via a mechanism that requires adenine biosynthesis directly or indirectly. The BCprot profile was uninformative with respect to the mechanism of action of this compound.

3. Discussion

Our comparative, genome-wide fitness survey of the original YKOaux and two prototrophic versions of the collection across diverse environmental and stress conditions revealed several surprising findings relevant to applying these collections in gene function studies. First, while both the PBprot and BCprot satisfy the definition of prototrophy, ‘that a cell or organism has the same nutritional requirements as wild-type’, the benefits of prototrophy are offset by the cost of losing informative deletion strains. For example, the selection on MM during the construction of the prototrophic collections by definition prohibits future study in these basic nutrient conditions, as informative strains unable to grow will be selected against. Our study demonstrates that these required selection steps introduced both predictable and unexpected biases. Specifically, only approximately 25% of the 882 strains missing from the BCprot collection were anticipated based on these selection steps. Of the remaining 670 strains, 57% (380) were also missing from the PBprot collection, about half of which were identified as slow growers. To avoid misinterpretation
in analysing fitness profiles, it is important to be aware of the biological processes associated with these missing strains. While the repair of the YKO auxotrophies by genetic complementation in PBprot was more effective than backcrossing to a prototrophic strain (with respect to strain loss), it was not neutral. Phenotypic differences between episomal and integrated genetic complementation are well documented [50,51]. We therefore expect that, despite our ability to successfully correct for a well-defined HLU signature, unanticipated episomal effects are likely to occur that will escape detection. By contrast, though the BCprot collection restored prototrophic markers to their native location (with the exception...
of the HIS3 orthologue from *S. pombe* from a non-HIS3 promoter), the CAN1 and LYPI deletions present in the genetic background also introduced biases, as demonstrated for the *cpa1Δ can1Δ* synthetic lethal phenotype. These effects disrupt a key feature of competitive fitness assays—namely that the relative strain abundance in the starting pool is approximately equal. Nutritional selection steps skew this initial distribution, particularly when multiple strain passages are part of the construction methodology. As a result, the ability to detect FDs becomes more difficult, as reflected by the divergent background thresholds and lower signal intensity distributions of the prototrophic collections, compared with the YKOaux collection (electronic supplementary material, figure S2).

The unexpected liabilities present in the prototrophic collections underscore that highly engineered versions of YKOaux deletion collections are more constrained than generally assumed. Informative strains lost from the BCprot collection (approx. 900 strains) share significant biological enrichment for genes involved in mitochondrial processes that compromise the ability to interrogate these processes (figure 1c). Consistent with this finding, we found that this set of strains was also absent in the MATA haploid SGA. The SGA collection serves as the starting point for the study of synthetic genetic interactions [52], yet approximately 1800 total strains are not detectable by barcode microarray hybridization signal (electronic supplementary material, figure S9), limiting the biological space surveyed by SGA and related deletion collections requiring sequential selective pinning assays. Nonetheless, the value of these and other collections and technologies in providing biological insight beyond the scope of the original YKO is indisputable.

The ability to perform such a precisely genetically controlled study on three genotypically distinct deletion collections in *S. cerevisiae* is not currently feasible in other systems. Our results therefore may provide insight into fundamental principles of genotype-by-environment relationships. For example, although the concept of robust genetic buffering is pervasive in the literature (primarily from the systematic study of digenic interactions), our results also suggest that condition-dependent cellular responses (i.e. phenotype) are greatly influenced by genotype.

The experimental design and assay constraints described here may help guide screens in other organisms and cell lines as they become tractable using CRISPR and other genome-editing techniques. Systematically benchmarking genomic libraries will be critical to establishing and maintaining the quality of functional and phenotypic gene annotations. Finally, we hope our study will serve to encourage and guide the design of future yeast deletion collections, most notably the need to move beyond derivative YKOaux libraries to the de novo construction of a truly prototrophic collection.

4. Conclusion

This work underscores the degree to which systematic genetics and genomics has advanced our understanding of genotype-phenotype relationships. The resolution of comparative fitness profiling is highly sensitive, providing detailed biological insight and revealing methodological biases inherent in strain construction. Furthermore, this work demonstrates that despite differences in protocols, laboratories and experimental read-out, the results presented here can readily be extended to meta-analyses. We hope that these results encourage systematic comparative genomics of more divergent yeast collections such as those described for pseudo-filamentous or enological strains [53,54] and closely related human pathogens [55].

5. Material and methods

5.1. Yeast deletion strains and media preparation

The YKOaux and MATA deletion collections are from the original stock centre of the *Saccharomyces* Genome Deletion Project [1], curated and maintained by Angela Chu at the Stanford Genome and Technology Center. The PBprot [9] and BCprot [25] deletion collections were kindly provided by the Ralser and Caudy laboratories. Synthetic complete and amino acid dropout media were purchased from SBI or Sigma and water was deionized and reagent grade. Deletion collection material was from the Stanford Genome and Technology Center. The PBprot [9] and BCprot [25] deletion collections were kindly provided by the Ralser and Caudy laboratories. Synthetic complete and amino acid dropout media were purchased from SBI or Sigma and water was deionized and reagent grade. Deletion collection material was from the Stanford Genome and Technology Center.

5.2. Deletion pool construction

The diploid YKOaux, haploid MATA, BCprot and PBprot collections were pinned (S&G Robotics Inc., BM3-BC) from thawed glycerol stocks in 384-well or 96-well plates, respectively, onto rich YPD media (20 g l\(^{-1}\) bacto peptone, 10 g l\(^{-1}\) yeast extract, 20 g l\(^{-1}\) bacto agar and 20 g l\(^{-1}\) glucose), and recovered for 48–72 h at 30°C until colonies reached 2 mm in diameter. Plates were flooded with 12 ml liquid media and yeast cells were soaked and scraped off the plates. Resuspended cells from each plate were pooled in a sterile flask, and the final OD\(_{600}\) of the pool was adjusted to a final concentration of 7% (v/v), mixed well, and the final pool aliquoted into individually capped PCR tubes and stored at –80°C.

5.3. Competitive fitness assays: synthetic media screens

Pooled deletion strains were diluted to starting OD\(_{600}\) of 0.0625 in 700 µl and were grown in duplicate wells on the same plate for five doublings in a Tecan Genios (Tecan Systems, Inc.) spectrophotometer at 30°C. Cells were manually harvested (synthetic media and drug screens) or automatically collected (YPD screens) using a Packard Multiprobe (PerkinElmer) liquid handler and stored at –20°C in a 48-well plate for no longer than 1 day. For the amino acid drop-out experiments, each pooled collection was grown in SC medium or rich medium (YPD) as the control condition, and synthetic medium with an individual amino acid of interest dropped out as the experimental condition. For the YPG experiments, 3% glycerol was the experimental condition and YPD was the control condition.

5.4. Competitive fitness assays: chemical screens

Samples were subject to the same starting OD\(_{600}\) and doubling times as above. Screening concentrations for each compound (cisplatin (Toronto Research Chemicals), PCID 16001701 (ChemDiv), CCCP (Sigma), FCCP (Sigma)) were...
5.5. Array normalization and preprocessing

Each probe on the TAG4 barcode microarray (Genflex tag16K array, Affymetrix) is represented by five replicate features dispersed across the array that allow hybridization artefacts to be identified and corrected. Hybridization artefacts were removed using a previously described masking algorithm [27]. Independent sample sets were defined by collection and growth media (six sets in total, PBprot, BCprot and YKOaux in SC and YPD). To define background thresholds independently for each pool, we used a two-component Gaussian mixture model to fit the distribution of tags in the control arrays in each set (R v. 3.2.2, mixtools package, v. 1.0.4) [56,57]. The estimated components represent tags that successfully hybridized (present) and tags that did not hybridize (absent). We used the posterior distribution of the assignment of a tag to the present or absent component to select present tags for further analysis in non-control array data. To be called as present, all tags representing an ORF had to have a posterior value greater than 0.5 in all of the control replicates.

During the course of this study, we recognized that the homozygous BY4743 pools we used in this study were missing a subset of 143 strains due to a technical error that occurred during pool construction. These strains are part of the YKO v. 2.0 (http://www-sequence.stanford.edu/group/yeast_deletion_project/ykov2.html) that had already been added to the MAITA versions of the collections available from commercial suppliers. Because our homozygous strain collection is derived from the original Stanford collection, these strains were omitted during shipment. In our study of the homozygous collection, the presence of these strains is supported by more than 3000 experiments [32]. This small subset of strains was used only for the purposes of the Venn diagram presented in figure 1a.

Next, tags designated as present upstream (uptags) and downstream (downtags) of the drug resistance cassette were normalized separately to their overall median across arrays within each of the six sets (the PBprot, BCprot and YKOaux collections in SC and YPD media). The uptag and downtag were collapsed into a single value by selecting the ‘best’ tag defined by the tag that exhibited the lowest coefficient of variation across the control replicates for each set. Biological replicates for each condition were performed in triplicate and batch corrected for technical variation using the ComBat function available in the R sva package (v. 3.14.0) [58].

5.6. Fitness defect scores

FD scores for each tag in each set were calculated by subtracting the log2 intensity of each individual tag in the treatment condition from the corresponding median in the control conditions. To estimate strains exhibiting significant FD scores, values from independent triplicate experiments were fit to a linear model; q-values (threshold \(q < 0.05 \)) were obtained from the resulting p-values using the Benjamini—Hochberg method to adjust for multiple comparisons [59]. Pearson’s correlations between the YKOaux and PBprot collections were calculated using deletion strains that had an FD score greater than one in at least one common nutrient-limiting condition. Fitness profiles for each condition (figures 2–6; electronic supplementary material, figures S1, S5, S7 and S8, Additional File S4) were summarized by the median value across triplicate FD scores. Similarly, the PBprot HLU signature was defined by the median FD across the HIS–, URA– and LEU– replicates. To identify specific FDs in HIS–, URA– and LEU– dropout conditions, the PBprot HLU common signature was subtracted from each of the HIS–, LEU– and URA– dropout conditions. To compare the overlap between FDs observed in Bar-seq versus those observed in the microarray analysis, only the experiments common to both were used (electronic supplementary material, Additional File S4).

5.7. GO enrichment

GO enrichment analysis was performed in CYTOSCAPE (v. 3.3) [60] with the ClueGO plugin (v. 2.2.5) [61]. Enrichments for strains missing in the BCprot collection (figure 1c) and deletion strains in the HLU signature (figure 3, inset) were compared with the gene universe (defined by the set of strains present in at least one of the three deletion collections). GO biological process terms with less than five genes or greater than 300 genes were excluded from the enrichment analysis. A right-sided hypergeometric test was used with a Bonferroni step-down correction and a minimum p-value of 0.0005 with a kappa score threshold of 0.4 [62]. Node sizes shown in the figures were proportional to the number of genes found in the gene set associated with the term.

5.8. Individual strain analysis

The BCprot and PBprot cplA strains were grown individually from a starting OD600 of 0.0625 to saturation in MM, SC, MM + uracil and MM + uracil + arginine (1.3 \(\times 10^4 \) mg ml\(^{-1} \)) as shown in figure 5c or as described for pooled growth.

5.9. Library preparation

Bar-seq libraries were prepared using a custom two-step PCR approach using Phusion High-Fidelity DNA Polymerase (Thermo Fisher). First, uptags and downtags were separately amplified as described above for competitive fitness assays, but using primer pairs UP_F TCGTCGGCAGCGTCAG-ATGTGTAATAAGACAGGAGTGTCGACCTGCAGCGTACG or DOWN_F TCGTCGGCAGCGTCAG-ATGTGTAATAAGACAGGAGTGTCGACCTGCAGCGTACG and UP_R GTCTCGTGGGCTCGGAGATG-GTCGACCTGCAGCGTACG or DOWN_R GTCTCGTGGGCTCGGAGATG-GTCGACCTGCAGCGTACG. Uptag and downtag PCRs were then pooled in equal amounts and...
purified using the GeneJET PCR purification kit according to
the manufacturer’s instructions (Thermo Fisher). Second, puri-
fied barcodes were diluted 1 : 10 and 1 µl was used as template
in the second PCR using Nextera XT index primers (Illumina),
which contain individual barcodes as well as Illumina adapters.
Cycling conditions were as follows: 98 °C for 30 s; eight cycles of
98 °C for 10 s, 55 °C for 30 s, 72 °C for 15 s; 72 °C for 5 min.
Libraries were then purified using Agencourt AMPure XP beads
(Beckman Coulter) at a ratio of 3 : 5 beads to DNA, checked on
Agilent High Sensitivity DNA chips for the Bioanalyzer (Agilent) and quantified using Quant-iT high sensitivity dsDNA Assay kit
(Thermo Fisher). Pooled sequencing libraries were sequenced on a HiSeq 2500 (Illumina) in rapid run mode, generating paired or single-end
100 bp reads.

5.10. Bar-seq analysis

For the Bar-seq libraries sequenced with a paired-read protocol,
the read mates were merged into single reads using BBMERGE
v. 8.82 from the BBTOOLS/BBMAP analysis suite (https://sour-
cerfge.net/projects/bbmap/). Following that preliminary step, the same analysis procedure was then used on the reads
originating from all the libraries, sequenced with paired or
single-read protocols. Briefly, Bar-seq single sequence reads
were first trimmed to 50 bases with TRIMMOMATIC v. 0.33 [63]
and then mapped to a yeast barcode database using the short-read aligner BWA v. 0.7.12 [64]. The BWA database was
built using the barcode information from Pierce et al. [27]
with the concatenation of barcode primer sequences at both
ends of the barcodes specific for the uptags and downtags.

Filtering of the aligned reads was performed with the SAMTOOLS toolbox v. 1.2 [65], keeping only reads with mapping
quality of 30 and above. Reads were counted for each library
with the help of the BEDTOOLS suite v. 2.24 [66] and a matrix
of counts was created for the whole dataset with a custom-
made Perl script for downstream statistical analysis. After
filtering for tags that had greater than or equal to 50 counts
across all control replicates, uptags and downtags for each
strain were summed, normalized and analysed with the
edgeR package v. 3.10.5 [67] as previously described [28].

Data accessibility. The datasets generated during the study will be available in the BioProject repository PRJNA338880 upon publication.
The microarray data are deposited at GSE89761.

Authors’ contributions. E.A. and A.H-Y.L. carried out the biological experiments, participated in the design of the study and the micro-
array analysis, and drafted the manuscript. S.F., G.G. and E.A.
conceived the Bar-seq and microarray analysis. P.F. provided statistical support and edited the manuscript. S.S. conceived the
Bar-seq methodology and performed the sequencing. J.C. partici-
pated in the design of the microarray experiments. C.N. and
G.G. conceived the study, participated in its design and helped to
draft the manuscript. All authors read, edited and approved the
final manuscript.

Competing interests. The authors declare that they have no competing
interests.

Funding. C.N. and G.G. are supported by NASA and the CIHR. E.A.
was supported by a training grant to the GSAT program. S.S. was
partially supported by the UBC Sequencing and Bioinformatics
 Consortium.

Acknowledgements. Thanks are expressed to Kelsey Leduc for the design of
figure 5h. C.N. and G.G. thank A. Caudy and M. Ralser for
providing strains and experimental suggestions.

References

6. Hughes TR, Robinson MD, Mitsuakasik N, Johnston M. 2004 The promise of functional genomics: completing the

